RV’02 Preliminary Version

Tracing the executions of concurrent programs

Elsa Gunter ¢ Doron Peled b

& Department of Computer Science
New Jersey Institute of Technology
University Heights
Newark, NJ, 07102-1982 USA

> Department of Elect. & Comp. Eng.
The University of Texas at Austin
Austin, TX 78712 USA

Abstract

Checking the reliability of software is an ever growing challenge. Fully automatic
tools that attempt to cover the entire state space often fail because of state explosion.
We present instead a tool that employs some less-ambitious but useful methods to
assist in software debugging. The tool provides an automatic translation of the code
into visual flowcharts, allowing the user to interactively select execution paths. The
tool assists the user by calculating path conditions and exploring the neighborhood
of the paths. The tool also allow the user to interactively step through the execution
of the program, directed by temporal formulas interpreted over finite sequences. We
will show several different ways of using these capabilities for debugging sequential
and concurrent programs.

1 Introduction

Computer programs have nowadays quite a different magnitude and complex-
ity than two or even one decade ago. Software projects are undertaken by
large teams of programmers, writing many thousands line of code. Many
newly developed software systems include parallelism. Different parts of the
system may reside on different machines, sometimes in different locations, and
interact via some coordination mechanism such as message passing. The soft-
ware development teams, like the software itself, work in parallel, interfacing
with each other in order to complete a coherent product. Over the last couple
of decades, there have been many attempts to develop techniques and tools
for enhancing the reliability of software.

The earliest, and still most widely used method, is software testing [15].
This method stipulates that experienced testers (usually being highly qualified
programmers) construct a collection of test cases, usually executions of the

This is a preliminary version. The final version will be published in
FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

GUNTER AND PELED

program, to be checked. The test cases are a sample of the executions of the
program, and are supposed to provide a good coverage that attempts to catch
most if not all of the errors. The construction of the test cases is often based on
the experience and intuition of the tester. They are often generated by having
the tester first examine the code, with some commonly recurring errors, e.g.,
having array indexes out of bound, and trying to produce executions that will
manifest such failures. Testing methods highly depend on the quality of the
tester and are known to remove many of the programming errors, but not all
of them.

A more recent method is program verification [2,6], attempting to formally
prove that a program is correct, with respect to some correctness criteria and
specification, and within some proof system. Deductive theorem proving is
axiomatic based and tend to be quite costly. It has been mostly demonstrated
on small examples, and does not scale up very well. Nevertheless, it has impor-
tant contributions to the way programmers think when developing software.
In particular, program verification suggests the useful idea of an invariant,
and the related precondition and postcondition.

The automatic verification of finite state systems, called model check-
ing [3,4], attempts to perform the verification task with minimal human in-
tervention for the limited case where the system has finitely many states. A
naive attempt to check all the system states by systematic enumeration often
fails due to the state explosion problem. Many heuristic methods are em-
ployed to alleviate this problem. It is still true that with today’s methods,
a comprehensive verification of full scale software is still a long term target.
One main constraint of model checking is that it can find an error only once
the property to be checked is formally specified.

The approach we are taking here is to develop an easy to use software anal-
ysis tool that exploits techniques derived from the various software reliability
methods mentioned above. Preliminary versions of some features of the tool
are described in [11,12]. We are guided by several principles. The first is to
restrict the objective to exploring execution paths, consisting of a sequence of
program states or program instructions. We do not attempt to solve the en-
tire program correctness program, nor to provide a comprehensive state space
search or analysis. We deal with execution sequences and paths in the code
of the program, and provide various algorithms to explore and analyze such
paths. Although the tool is capable of assisting in obtaining a formal proof of
a program (in the case of partial correctness of sequential programs, as will
be demonstrated), it is not its main intended use.

The second principle is the use of visual and interactive methods. We be-
lieve that it is easier to illustrate software issues using a visual formalism, as
demonstrated by UML tools [5]. Allowing user interaction in the process does
not necessarily mean that we are not capable of automatically providing infor-
mation, but rather that we are exploiting the user’s experience and intuition
to guide the debugging process.

130

GUNTER AND PELED

2 Path Operations

Software testing is based on inspecting paths. Therefore, it is of great im-
portance to allow convenient selection of execution paths. Different coverage
techniques suggest criteria for the appropriate coverage of a program. Our
tool leaves the choice of paths to the user. Once the source code is compiled
into a flow chart, or a collection of flow charts, the user can choose the test
path by clicking on the nodes on the flow charts.

The selected path appears also in a separate window, where each line
lists the selected node, the process and the shape (the lines are also indented
according to the number of the process to which they belong). In order to
make the connection between the code, the flow chart and the selected path
clear, again sensitive highlighting is used. For example, when the cursor points
to some node in the path window, the corresponding node in the flow chart is
highlighted, as is the corresponding text of the process.

Once a path is fixed, the condition to execute it is calculated. The tool
allows altering the path by removing nodes from the end, in reverse order. This
allows, for example, the selection of an alternative choice for a condition, after
the nodes that were chosen past that condition are removed. Another way to
alter a path is to use the same transitions but allow a different interleaving
of them. When dealing with concurrent programs, the way the execution of
transitions from different nodes are interleaved is perhaps the most important
source of problems. The tool allows the user to flip the order of adjacent
transitions on the path, if they belong to different processes.

An important information that is provided is the condition to execute a
selected path. An important point to note is that an execution path in a set
of flow charts is really a sequence of edges, which when restricted to each of
the processes involved, forms a contiguous sequence. Selecting the node does
not always tell us how it executed: a condition may be true or it may be false.
The execution of a condition node, corresponding to an if-the-else condition, a
while condition, or similar, is determined by whether its ”true” or the ”false”
labeled edge was selected, which we can know by fixing the successor node
to the test in the process. Thus, if a condition node is the last node of some
process in the selected path, it would not contribute to the path condition, as
the information about how it is executed is not given.

Let & = s1s5...5, be a sequence of nodes. For each node s; on the path,
we define:

type(s;) is the type of the transition in s;. This can be one of the following:
begin, end, condition, wait, assign. A condition node is obtained from an
if or while statement. A wait node is similar to a condition, but has only a
true exit. It is used for synchronization of concurrent processes, as a process
cannot continue from this node unless the condition holds.

proc(s;) is the process to which s; belongs.
131

GUNTER AND PELED

cond(s;) is the condition on s;, in case that s; is either a condition or a wait
node.

branch(s;) is the label on a node s; which is a condition if it has a successor
in the path that belongs to the same process, and is “undefined” otherwise.

expr(s;) is the expression assigned to some variable, in case that s; is an
assign statement.

var(s;) is the variable assigned, in case s; is an assign statement.

plv/e] is the predicate p where all the (free) occurrences of the variable v are
replaced by the expression e.

The following is the algorithm used to calculate the path condition. It
works backwards, from tail to head of the sequence.

current_pred := ‘true’;
fori:=ntoldo
begin case type(s;) do

condition=
case branch(s;) do
‘true’=
current_pred := current_predAcond(s;)
‘false’=
current_pred := current_pred A—cond(s;)
‘undefined’=-
current_pred := current_pred
end case
wat=
current_pred := current_predAcond(s;)
assign=
current_pred := current_pred [var(s;)/expr(s;)]
end case
simplify(current_pred)

end

The meaning of the calculated path condition is different for sequential and
concurrent programs. In a sequential program, consisting of one process, the
precondition expresses all the possible assignments that would ensure execut-
ing the selected path, starting from the first selected node. When concurrency
is allowed, the precondition expresses the assignments that would make the
execution of the selected path possible. Thus, when concurrency is present,
the path precondition does not guarantee that the selected path is executed,
as there might be alternatives paths with the same variable assignments.

Simplifying expressions is a hard task. For one thing, it is not clear that
there is a good measure in which one expression is simpler than the other.
Another reason is that in general, deciding the satisfiability or the validity

132

GUNTER AND PELED

of first order formulas is undecidable. However, such limitations should not
discard heuristic attempts to simplify formulas, and for some smaller classes
of formulas such decision procedures do exist.

The approach for simplifying first order formulas is first to try to apply
several simple term-rewriting rules in order to perform some common-sense
and general purpose simplifications. In addition, it is checked whether the
formula is of the special form of Presburger arithmetic, i.e., allowing addition,
multiplication by a constant, and comparison. If this is the case, one can use
some decision procedures to simplify the formula.

The simplification that is performed includes the following rewriting:

* Boolean simplification, e.g., ¢ A true is converted into ¢, and ¢ A false is
converted into false.

* Eliminating constant comparison, e.g., replacing 1 > 2 by false.

* Constant substitution. For example, in the formula (z = 5) A, every (free)
occurrence of z in ¢ is replaced by 5.

* Arithmetic cancellation. For example, the expression (z+2)—3 is simplified
into x — 1, and z % 0 is replaced by 0. However, notice that (z/2) * 2 is not
simplified, as integer division is not the inverse of integer multiplication.

In case the formula is in Presburger arithmetic, we can decide if the formula
 is unsatisfiable, i.e., is constantly false, or if it is valid, i.e., constantly true.
The first case is done by deciding on —3dx;dxs ... 3z, ¢, and the second case
is done by deciding on Vz1Vz,...Vz,p, where x; ...z, are the variables that
appear in . If the formula is not of Presburger arithmetic, one can still try
to decide whether each maximal Presburger subformula of it is equivalent to
true or false.

A prior tool that used symbolic evaluation of paths of programs is described
in [13]. This early tool (1976) could calculate path conditions of a selected
path in a sequential PL/I program. The path was selected from the text of
the program. The calculation used forward symbolic execution.

3 Examples

Consider the simple protocol in Figure 1, intended to obtain mutual exclusion.
In this protocol, a process can enter the critical section if the value of a shared
variable turn does not have the value of the other process. The code for the
first process is as follows:

begin
while true do
begin
while turn=1 do begin (* no-op *) end;
(x critical section *)
turn:=1

133

GUNTER AND PELED

Come
re>
T

o>
re>
@ fajse

—
=
(]

false false
1:no-op 1:no-op
3:critical 3:critical
4:turn:=1 4:turn:=1
Fig. 1. A Mutual exclusion example
end

end.

The second process is similar, with constant values 1 changed to 0.

When we select the following path, which admits the second process mu-
texl, while the first process mutez(is busy waiting as follows:

(mutex0 : 0)
(mutex1 : 0)
<mutexl : 5>

<mutex0 : 5>
<mutexl : 2>

<mutex0 : 2>
[mutex1 : 3]
[mutex0 : 1]

we get the path condition turn = 1, namely that the second process will get
first into its critical section if initially the value of the variable turn is 1. When
we check a path that gets immediately into both critical sections, namely:

(mutex0 : 0)
(mutex1 : 0)
<mutexl : 5>

<mutex0 : 5>

<mutex0 : 2>
<mutexl : 2>

[mutex0 : 3]
[mutex1l : 3]

134

GUNTER AND PELED

we get a path condition turn # 1 A turn # 0. This condition suggests that
we will not get a mutual exclusion if the initial value would be, say, 3. This
indicates an error in the design of the protocol. The problem is that a process
enters its critical section if turn is not set to the value of the other process.
This can be fixed by allowing a process to enter the critical section if turn is
set to its own value.

Applications

The combination of a graphical interactive tool, the ability to calculate path
conditions and simplifying them has several uses for gaining intuition about
programs and debugging them.

Proving partial correctness

The partial correctness of a sequential program is proved with respect to some
initial condition ¢ and final assertion 1. The notation {¢}P{1} means that
if ¢ holds when the execution begins, and the program terminates (partial
correctness does not include the assertion that the program terminates), then
upon termination v holds.

In order to verify the partial correctness of a program, it is sufficient to
do the following. We first annotate edges of the flowchart with invariants
that hold while control passes these edges. The edge from the begin node
is annotated with the initial condition, and the edge into the end node is
annotated with the final assertion. We need to find edges that will cut all
the executions of the program into finitely many finite paths oy, o, Each
such path includes an enter and an exit edge. The enter edge to path o;
is annotated with an invariant u;, and the exit edge is annotated with an
invariant v;. We have to prove the following:

If 0; is executed from a state satisfying u;, it ends in a state satisfying v;.

In order to prove that, we can add interactively a new process, consisting of
the following code:

begin wait v; end.

We let the system compile the code into a trivial three nodes flowchart.
We select the path o; and then select the node for v; and the corresponding
end node. The tool generates a path condition ¢;. This is the condition for
executing the path o; and reaching a state satisfying v;. We have to prove the
logical implication p; — 6;. (By building another process with this implication
as a wait condition, similar to the above created process, we can apply the
system simplification over this formula, but it is not guaranteed that the
system will succeed in simplifying it to ¢true even if the formula is valid.)

135

GUNTER AND PELED

Generate test cases

In white-box testing, we are often interested in finding test cases for covering
various executions of the program. In order to cover a path in the execution,
we may select the path in our system and let the system calculate the path
condition. In order to generate a test case that will pass through that path,
we need to instantiate the path conditions with a satisfying assignment.

Depending on the required program coverage, we may want to specialize
the path beyond the execution of its nodes. For example, passing a node s
labeled with the condition x = 3 or y = 4, we may want to test the path when
x =3 Ay # 4 and again when z # 3 Ay =4 (when both x # 3 Ay # 4, the
path will not be selected). We can create, e.g., the first case, by interactively
creating a new process with the code:

begin wait x=3 and not y=4 end.

We select the desired path, but add the new node for the wait statement
(and the corresponding end) after selecting the node s. Then we continue with
the original path.

Playing “what if” games

The interactive symbolic manipulation approach is very flexible and allows us
to study the connection between the program variables. It does not limit us to
start the program at the beginning or to initialize all the variables. By adding
additional processes that interact and interfere with our code, we can simulate
many mental activities that are related to code inspection in a formal way.

For example, we can check what happens if the program executes from
some point with x = 0, y = 3 and z = 4. We do that by generating a new
process:

begin x:=0; y:=3; z:=4 end.

We select these nodes followed by the nodes of the original path. The path
condition can still be a formula, where the other program variables appear as
free variables. If there are no other program variables, selecting the path with
amount to simulating it; the automatic simplification of formulas involving
constants will result in that in this case the path condition will be limited to
true and false. The former means, for sequential programs, that ‘this path
will be executed as selected when started with these values’. For concurrent
programs it means ‘this path may be executed, provided appropriate nonde-
terministic scheduling’. A false means (in both cases) that the path cannot
be executed starting with these values.

Ezxploring the neighborhood of an execution

Given an execution path in which an error occurs, it is important to be able
to inspect similar paths, its neighborhood [17]. Looking at related paths can

136

GUNTER AND PELED

help us in pinpointing the exact location of the error (it does not have to be
the first point where we start to obtain wrong values). Looking at related
paths can also help us to suggest the fix for the bug and to check whether the
fix will only solve the problem locally. The tool allows us to look at related
paths of two kinds:

(i) Paths with mutual prefix. Assuming that some error occurs in some
prefix of the paths, we can easily check other paths with the same prefix
and see whether they have the same problem.

(ii) Path with the same instructions, but with a different interleaved order.
In concurrent systems, the possibility of ordering events in different order
is a major contributor to programming errors.

4 A Temporal Debuger

We extend the use of a temporal specification logic for interactively controlling
the debugging of systems. We allow specifying temporal properties of finite
sequences. Our debugger is enriched with the ability to progress from one step
to another via a finite sequence of states that satisfy a temporal property.

The usual mode of debugging involves stepping through the states of a
system (program) by executing one or several transitions (with different gran-
ularities, e.g., a transition can involve the the execution of a procedure). De-
bugging concurrent systems is harder, since there are several cooperating pro-
cesses that need to be monitored. Stepping through the different transitions
can be applied in many different ways. Instead, we allow applying a temporal
property that describes a finite sequence of concurrent events that need to be
executed from the current state, leaping into the next state.

We interpret linear temporal logic (LTL) on finite sequences. The auto-
matic translation from LTL to finite state automata in [8] is adapted to include
the finite case.

One of the most popular specification formalisms for concurrent and reac-
tive systems is Linear Temporal Logic (LTL) [18]. Its syntax is as follows:

pu=(p)[~wleVelere] Opl|Op
D[CpleUe|eVelp
where p € P, with P a set of propositional letters. We denote a propositional
sequence over 27 by o, its ith state (where the first state is numbered 0) by
o(i), and its suffix starting from the ith state by 0. Let |o| be the length

of the sequence Y, which is a natural number. The semantic interpretation of
LTL is as follows:

e 0 =Qypiff |o| > 1 and oV = ¢.
o 0 = U1 iff 0 = 1) for some 0 < j < |o| so that for each 0 < i < 7,
a@ = .
e 0 = — iff it is not the case that o = .
137

GUNTER AND PELED

e 0 = ¢V iff either 0 = ¢ or o = .
e 0 =piff |o| >0 and o(0) = p.

The rest of the operators can be defined using the above operators. In
particular, O = = O, o A = =((-¢) V (=¢)), e Vb = =((mp) U (1)),
true = pV —p, false = p A —p, Op = false V p, and O = true U . The
operator) is a ‘weak’ version of the () operator. Whereas ()¢ means that
¢ holds in the suffix of the sequence starting from the next state, ()¢ means
that if the current state is not the last one in the sequence, then the suffix
starting from the next state satisfies (.

We distinguish between the operator (), which we call strong nexttime,
and O, which we call weak nexttime. Notice that

(1) (O¢) A (O¥) = Olp A),

since ()¢ already requires that there will be a next state. Another interesting
observation is that the formula ()false holds in a state that is in deadlock or
termination.

The operators 4 and V can be characterized using a recursive equation,
which is useful for understanding the transformation algorithm, presented in
the next section. Accordingly, o Uy = ¥ V (¢ A Qp UY) and ¢ Vi =
YA (e VOlp V).

We exploit temporal specification to control stepping through different
states of a concurrent system. The basic operation of a debugger is to step
between different states of a system in an effective way. While doing so, one
can obtain further information about the behavior of the system.

Given the current global state of the system s, we are searching for a
sequence £ = SpS; ... S, such that

® 50 =5s.
e 7 is smaller than some limit given (perhaps as a default).

LR

The temporal stack consists of the different sequences, used in the simu-
lation or debugging obtained so far. It contains several temporal steps, each
corresponding to some temporal formula that was satisfied. The end state of a
temporal step is also the start state of the next step. We search for a temporal
step that satisfies a current temporal formula. When such a step is found, it
is added to the temporal stack. We can then have several options of how to
continue the search, as detailed below.

Searching a path can be done using search on pairs: a state from the joint
state space of the system, and a state of the property automaton. Furthermore,
each new temporal formula requires a new copy of the search space. Recursion
is handled within that space. Thus, when starting the search for formula ¢,
we use one copy of the state space. When seeking a new temporal step for q,
we start a fresh copy. If we backtrack on the second step, we backtrack the
second search, looking for a new finite sequence that satisfies ,. If we remove

138

GUNTER AND PELED

the last step, going back to the formula ¢, we remove the second state space
information, and backtrack the first state space search. For this reason, we
need to keep enough information that will enable us to resume a search after
other temporal steps where exercised and backtracked.

The debugging session consists of searching the system through the tem-

poral stack. At each point we may do one of the following:

Introduce a new temporal formula and attempt to search for a temporal step
from the current state. The new temporal step is added to the search stack.
A new automaton for the temporal formula is created, and the product of
that automaton with the system automaton with new initial state of the
current state is formed. The temporal step is found by finding a path to an
accepting state in this product automaton.

Remove a step. In this case, we are back one step in the stack. We forget
about the most recent temporal formula given, and can replace it by a new
one in order to continue the search. We also discard the temporal automaton
and product automaton generated for that temporal step.

Backtrack the most recent step. The search process of the latest step re-
sumes from the place it was stopped using the automaton originally created
for this temporal step. This is an attempt to find another way of satisfying
the last given formula. We either find a new temporal step that replaces the
previous one, or report that no such step exists (in this case, we are back
one step in the stack and discard the automata created for this step).

We allow also simple debugger steps, e.g., executing one statement in one
process. Such steps can be described as trivial temporal steps (using the
nexttime temporal operator).

There are further parameters for the choice of temporal steps, besides the

minimality and maximality of the step.

Allowing or disallowing a different step that ends with the same system
state as before. In the former case, we may request an alternative step and
reach exactly the same system state, but passes through a different path on
the way. The latter case is easily obtained by adding a special flag to each
system state that was found during the search.

Allowing or disallowing the same sequence of system states to repeat. Such
a repetition can happen, for example, in the following situation. The spec-
ification is of the form (Op) Vv ($g). Consider a sequence of system states
in which (—=p) A (—¢) holds until some state in which both p and ¢ start
to hold, simultaneously. Such a sequence can be paired up with different
property automaton states to generate two different paths.

Allowing all possible paths with sequence of system states that satisfy the
temporal step formula ¢ or only a subset of them. Typical searches like
depth first or breadth first search do not pass through all possible paths
that satisfy a given formula . If a state (in our case, a pair) participated

139

GUNTER AND PELED

Fig. 2. Exponential number of sequences

before in the search, we do not continue the search in that direction. For this
reason, the number of paths that can be obtained in this way is limited, and,
on the other hand, the search is efficient. There are topological cases where
requiring all the paths results in exponentially more paths than obtained
with the above mentioned search strategies, see e.g., the case in Figure 2.

The case where similar sequences are generated as a result of repeated back-
tracking may seem at first to be less useful for debugging. Intuitively, we may
give up exhaustiveness for the possibility of stepping through quite different
sequences. However, there is a very practical case in which we may have less
choice in selecting the kind of search and the effect of backtracking. Specifi-
cally, in many cases keeping several states in memory at the same time and
comparing different states may be impractical. In this case, we may want to
perform memoryless search, as developed for the Verisoft system [9]. In this
case, we may perform breadth first search with increasingly higher depth (up
to some user defined limit). We keep in the search stack only information
that allows us to generate different sequences according to some order, and
to regenerate a state. Such information may include the identification of the
transitions that were executed from the initial states.

Consider for example the two processes in Figure 1. We can try to check
the property

mutexl at oU mutex0 at 3

This checks whether process mutex(can get into its critical section while
process mutex1 has not yet moved. Since the system initializes all the variables
to 0, we obtain a path:

(mutex0:0)
(mutex1:0)
<mutex0:5>
<mutex0:2>
[mutex0:3]
We can now add another temporal step, by checking:
Omutexl at 3
We may obtain the following temporal step:

<mutexO0:4>
<mutex1:5>

140

GUNTER AND PELED

<mutex1:2>
[mutex1:3]

Alternatively (depending on the search order and search option used) we
can obtain the following step:

<mutexl1:5>
<mutexl1:2>
[mutex1:1]
<mutex0:4>
<mutex1:2>
<mutex1:3>

References

[1] R. Alur, G. Holzmann, D. Peled, An anlyzer for message sequence charts,
Software: Concepts and Tools, 1(1996), 70-77.

[2] K. R. Apt, E. R. Olderog, Verification of Sequential and Concurrent Programs,
Springer-Verlag, 1991 (second edition, 1997).

[3] E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic. Workshop on Logic of Programs, Yorktown
Heights, NY, Lecture Notes in Computer Science 131, Springer-Verlag, 1981,
52-T1.

[4] E. A. Emerson, E. M. Clarke, Characterizing correctness properties of parallel
programs using fixpoints, International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science 85, Springer-Verlag, July
1980, 169-181.

[5] M. Fowler, K. Scott, UML Distilled : Applying the Standard Object Modeling
Language, Addison-Wesley, 1997.

[6] N. Francez, Program Verification, Addison Wesley, 1992.

[7] E.R. Gansner, S.C. North, An open graph visualization system and its
applications to software engineering, Software — Practice and Experience,
30(2000), 1203-1233.

[8] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple On-the-fly Automatic
Verification of Linear Temporal Logic, PSTV95, Protocol Specification Testing
and Verification, 3-18, Chapman & Hall, 1995, Warsaw, Poland.

[9] P. Godefroid, Model checking for programming languages using Verisoft, POPL
1997, 174-186.

[10] G. Holzmann, Design and Validation of Computer Protocol, Prentice Hall.

[11] E. Gunter, D. Peled, Path Exploration Tool, TACAS 1999, LNCS 1579,
Springer, 405-419.

141

GUNTER AND PELED

[12] E. Gunter, D. Peled, Temporal debuging for concurrent systems, TACAS 2002,
LNCS 2280, Springer, 431-444.

[13] J. C. King, Symbolic execution and program testing, Communication of the
ACM, 1976, 385-394.

[14] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March 1993.
[15] G.J. Myers, The Art of Software Testing, John Wiley and Sons, 1979.

[16] B. Selic, G. Gullekson, P. T. Ward, Real-Time Object-Oriented Modeling,
Wiley, 1993.

[17] N. Sharygina, D. Peled, A combined testing and verification approach for
software reliability, FME 2001, LNCS 2021, 611-628.

[18] A. Pnueli, The temporal logic of programs, 18th IEEE symposium on
Foundation of Computer Science, 1977, 46-57.

142

